54 research outputs found

    Novel schemes for measurement-based quantum computation

    Full text link
    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique further develops tools from many-body physics - based on finitely correlated or projected entangled pair states - to go beyond the cluster-state based one-way computer. We identify resource states that are radically different from the cluster state, in that they exhibit non-vanishing correlation functions, can partly be prepared using gates with non-maximal entangling power, or have very different local entanglement properties. In the computational models, the randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. Finally, we comment on the possibility of tailoring computational models to specific physical systems as, e.g. cold atoms in optical lattices.Comment: 5 pages RevTeX, 1 figure, many diagrams. Title changed, presentation improved, material adde

    Supersonic quantum communication

    Full text link
    When locally exciting a quantum lattice model, the excitation will propagate through the lattice. The effect is responsible for a wealth of non-equilibrium phenomena, and has been exploited to transmit quantum information through spin chains. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are limited to a causal cone defined by a constant speed, up to exponentially small corrections. In this work we show that for translationally invariant bosonic models with nearest-neighbor interactions, this belief is incorrect: We prove that one can encounter excitations which accelerate under the natural dynamics of the lattice and allow for reliable transmission of information faster than any finite speed of sound. The effect is only limited by the model's range of validity (eventually by relativity). It also implies that in non-equilibrium dynamics of strongly correlated bosonic models far-away regions may become quickly entangled, suggesting that their simulation may be much harder than that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe

    NP-Hardness and Undecidability

    Get PDF
    Tensor network states constitute an important variational set of quantum states for numerical studies of strongly correlated systems in condensed- matter physics, as well as in mathematical physics. This is specifically true for finitely correlated states or matrix-product operators, designed to capture mixed states of one-dimensional quantum systems. It is a well-known open problem to find an efficient algorithm that decides whether a given matrix-product operator actually represents a physical state that in particular has no negative eigenvalues. We address and answer this question by showing that the problem is provably undecidable in the thermodynamic limit and that the bounded version of the problem is NP-hard (nondeterministic- polynomial-time hard) in the system size. Furthermore, we discuss numerous connections between tensor network methods and (seemingly) different concepts treated before in the literature, such as hidden Markov models and tensor trains

    Optimal entanglement witnesses for continuous-variable systems

    Full text link
    This paper is concerned with all tests for continuous-variable entanglement that arise from linear combinations of second moments or variances of canonical coordinates, as they are commonly used in experiments to detect entanglement. All such tests for bi-partite and multi-partite entanglement correspond to hyperplanes in the set of second moments. It is shown that all optimal tests, those that are most robust against imperfections with respect to some figure of merit for a given state, can be constructed from solutions to semi-definite optimization problems. Moreover, we show that for each such test, referred to as entanglement witness based on second moments, there is a one-to-one correspondence between the witness and a stronger product criterion, which amounts to a non-linear witness, based on the same measurements. This generalizes the known product criteria. The presented tests are all applicable also to non-Gaussian states. To provide a service to the community, we present the documentation of two numerical routines, FULLYWIT and MULTIWIT, which have been made publicly available.Comment: 14 pages LaTeX, 1 figure, presentation improved, references update
    • …
    corecore